Table 2 Effects of hyperparameters on the performance of a multilayer perceptron neural network for predicting bread texture (activation function, regularization, and dropout)
| Train set | Test set |
R2 | RMSE | R2 | RMSE |
Activation function | Sigmoid | 0.3224±0.0999 | 0.1918±0.0141 | 0.4005±0.1497 | 0.1942±0.0245 |
Tanh | 0.7508±0.0029 | 0.1166±0.0007 | 0.6965±0.0107 | 0.1392±0.0024 |
Linear | 0.7496±0.0019 | 0.1169±0.0004 | 0.6934±0.0107 | 0.1399±0.0024 |
ELU | 0.7550±0.0040 | 0.1156±0.0009 | 0.6938±0.0073 | 0.1398±0.0017 |
ReLU | 0.9882±0.0112 | 0.0229±0.0108 | 0.7504±0.0471 | 0.1257±0.0119 |
Leaky_ReLU | 0.9684±0.0130 | 0.0404±0.0097 | 0.7846±0.0303 | 0.1170±0.0081 |
|
Regularization | 0.9981±0.0021 | 0.0088±0.0049 | 0.7891±0.0402 | 0.1156±0.0107 |
|
Regularization+Dropout | 0.9667±0.0108 | 0.0421±0.0069 | 0.8109±0.0272 | 0.1096±0.0079 |